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Abstract

Prompted models have demonstrated impressive

few-shot learning abilities. Repeated interac-

tions at test-time with a single model, or the

composition of multiple models together, further

expands capabilities. These compositions are

probabilistic models, and may be expressed in

the language of graphical models with random

variables whose values are complex data types

such as strings. Cases with control flow and dy-

namic structure require techniques from proba-

bilistic programming, which allow implementing

disparate model structures and inference strate-

gies in a unified language. We formalize sev-

eral existing techniques from this perspective, in-

cluding scratchpads / chain of thought, verifiers,

STaR, selection-inference, and tool use. We re-

fer to the resulting programs as language model

cascades.

1. Introduction

Language models (LMs) have demonstrated impres-

sive few-shot learning abilities (Brown et al., 2020;

Chowdhery et al., 2022). This has led to a number of

proposals to use LMs as the basis of informal reason-

ing, including scratchpads (Nye et al., 2021), chain of

thought prompting (Wei et al., 2022; Wang et al., 2022),

learned verifiers (Cobbe et al., 2021), selection-inference

(Creswell et al., 2022), and bootstrapping (Zelikman et al.,

2022). They have also been applied in formal mathematics

settings to guide theorem provers (Polu & Sutskever, 2020).

These methods involve prompting to encourage step-by-

step reasoning, repeated interactions with a single LM, or

multiple LMs linked together, with the models being fine-
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tuned or prompted in different ways.

In this position paper, we argue that a useful unifying

framework for understanding and extending this disparate

body of work is in terms of probabilistic programming lan-

guages (PPL) extended to work with strings, instead of

more atomic data types like integers and floats. That is,

we use a PPL to define a joint probability model on string-

valued random variables, parameterized using LMs, and

then condition this model on string-valued observations in

order to compute a posterior over string-valued unknowns,

which we can then infer. We call such a probabilistic

program a language model cascade. We show that this

framework captures many recent approaches, and also al-

lows us to tackle more complex multi-step reasoning prob-

lems. By implementing many disparate model structures

and inference strategies in a single framework, we hope

that language model cascades will enable the development

of generic procedures to perform inference, tune parame-

ters, and choose prompts based on end-to-end objectives.1

2. Related work

There is a rich prior literature on probabilistic program-

ming languages (PPLs), which extend probabilistic graph-

ical models to support more complex joint distributions

whose size and “shape” can itself be stochastic (e.g., a

graph unrolled for a random number of iterations, until a

data-dependent stopping criterion is met). PPLs extend tra-

ditional programming languages with the ability to sample

from distributions and observe values of variables based

on data (i.e. condition the model). The semantics of sam-

ple and observe vary depending on the inference algorithm.

For more details, see van de Meent et al. (2018).

Recently there has been an explosion of interest in large

language models, such as GPT-3 (Brown et al., 2020) and

PaLM (Chowdhery et al., 2022). These can be used for

tasks such as “zero-shot” question-answering. In this set-

ting, we provide the question Q as a prompt to the LM,

and then sample answers from the model, which we de-

note by p(A|Q, θ), where θ are the pre-trained model pa-

rameters. Alternatively, we can compute the MAP answer,

1An implementation is available at model-cascades.github.io

http://arxiv.org/abs/2207.10342v2
model-cascades.github.io
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Â = argmaxA p(A|Q, θ).

To ensure the model “does the right thing”, we can pro-

vide a small training set of question-answer pairs, D =
{(Qm, Am) : m = 1 : M} pairs. This can be provided as

extra context to the model, provided in the text prompt, fol-

lowed by sampling from p(A|Q,D, θ). We refer to this as

“few-shot prompting”. We can also fine-tune the model pa-

rameters on D to get θ′, and then sample from p(A|Q, θ′).

We can improve performance by introducing an additional

auxiliary “thought” variable, and then extend the model

to have the form p(A, T |Q) = p(A|T,Q)p(T |Q), where

each conditional is computed using an LM which includes

its conditioning variables as a part of its input. Work

on scratchpads (Nye et al., 2021) and chain of thought

(Wei et al., 2022) illustrate this, and finetune or prompt the

LM to produce this auxiliary thought before answering.

We typically condition this on a small set DS of

(Am, Tm, Qm) triples, and optionally a larger set DL of

(Am, Qm) pairs. We then compute a distribution over an-

swers to a test question using

p̂(A|Q) =
∑

T

p̂(A|Q, T )p̂(T |Q) (1)

where p̂(·) = p(·|DL, DS , θ) is the prior predictive dis-

tribution. (Scratchpad creates its prior predictive by fine-

tuning, while Chain of Thought adds DS to the LM

prompt.)

In practice, we cannot sum over all possible strings T in

Equation (1). The most common approach is to compute

the MAP estimate T̂ = argmax p̂(T ) using beam search,

and then to approximate the sum over T with this single

value. More recently, Self Consistency (Wang et al., 2022)

proposed to sample multiple values for T using forward

sampling of (A, T ) given Q, and then taking the answer A

that is most common in this set2.

PromptChainer (Wu et al., 2022) proposes a visual inter-

face for composing language models together, specifying

control flow and prompting strategies for each node in a

chain. Nodes may query language models or external sys-

tems. Socratic models (Zeng et al., 2022) extends model

chaining to the multimodal setting and demonstrates zero-

shot abilities on tasks for which no single model exists.

The Eliciting Latent Knowledge proposal (ELK, 2022) sug-

gests making latent variables explicit, modelled using a

Bayesian network, to improve interpretability and safety

for advanced AI systems.

Ortega et al. (2021) explains a formalism for LM finetun-

ing with causal graphical models in order to extend the pre-

2This bucketing is practical because most standard bench-
marks have answers that are just a couple words.

dictive capabilities of AI agents towards more adaptive be-

haviour. They focus on analysing an auto-regressive action

(random variable) prediction scheme in the interactive set-

ting of RL where a model is simultaneously a generator and

predictor of data.

3. Cascades

In this section, we show how to create cascades of LMs to

tackle various language-based reasoning problems. A cas-

cade is a probabilistic program that includes string-valued

random variables, sampled from an LM. For example, Fig-

ure 2 is a simple cascade for question answering. Each of

the yield expressions return a string distributed accord-

ing to the language model S.3 This program defines a joint

distribution over the variables question, thought,

and answer. Programs with complex control flow and

observations are included in Appendix A.

We implement cascades as a trace-based probabilistic pro-

gramming language embedded in Python via effect han-

dlers, inspired by Bingham et al. (2018); Phan et al. (2019),

and via coroutines, inspired by Kochurov et al. (2019). A

pretrained LM is used to parameterize all conditional dis-

tributions. A cascade supports arbitrary control flow and

recursion. While the current presentation is in terms of

few-shot prompting of causal language models, we empha-

size that the ideas are immediately applicable to finetuned

models, masked LM setting, and other complex data types

including images.

3.1. Scratchpads and Chain of thought

As our first example, we show how to represent a chain of

thought (Nye et al., 2021; Wei et al., 2022) as shown in Fig-

ure 1 and subsequent graphical model figures; refer to the

corresponding probabilistic programs in Appendix A. We

condition the A node not just on the test question Q, but

also on previous (Qm, Tm, Am) triples, which constitute

the few-shot prompting part of the model. This is denoted

by the shaded nodes inside the plate. Inference can be im-

plemented by ancestral sampling.

3.2. Semi-supervised learning

In Section 3.1, we provided a manually created set

(Qm, Tm, Am) triples, where the “thoughts” or “rational-

izations” were provided. A more scalable approach is to de-

fine a small set DS of such “supervised” triples, but then to

provide a larger set DL of (Qm, Am) pairs, which are eas-

3The first argument to S defines a unique name for the ran-
dom variable, and the remaining arguments conditions the LM
on a string prefix. A variable may be marked as observed within
the program, S(’varname’, obs=’observed value’),
or at inference time
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Qm
Tm Am

M

Q T A

Figure 1. Question-Thought-Answer model.

def qta():

q = yield S(’question’)

t = yield S(’thought’, question=q)

a = yield S(’answer’, question=q,

thought=t)

return a

Figure 2. Chain of thought cascade in Python. Each yield

S(...) statement samples a string from an LM. The name of

the random variable is provided as the first argument to S.

ier to gather. We can augment the pairs in DL by adding the

hidden Tm variable to get a semi-supervised setup, shown

in Figure 3.

Q T A

Qm
Tm Am

M

Figure 3. QTA model with hidden thoughts.

The Self-Taught Reasoner (STaR) (Zelikman et al., 2022)

proposes a procedure for fine-tuning LMs in the chain-

of-thought type setting. We can interpret their method

as a stochastic EM-like procedure in the cascade of Fig-

ure 3. In particular, they first fine-tune on the “fully ob-

served” dataset DS = {(Qm, Tm, Am)}. Then they im-

pute the unknown Ti values in the “partially observed”

dataset DL = {(Qm, Tm =?, Am)} during the “E” step

by doing rejection sampling on p(T,A|Qm) until finding a

thought which leads to the known correct answer. If sam-

pling (T,A) given the question fails to find the correct an-

swer, they sample thoughts from p(T |Qm, Am). This uses

a recognition network to approximately sample from the

posterior distribution over thoughts given the known cor-

rect answer. They call this approach “rationale generation

with rationalization”. They then update the parameters in

the “M” step based on these imputed thoughts. By inter-

preting the rationale generation at this higher level of ab-

straction, we open up the possibility of applying this tuning

method to other types of cascades.

3.3. Selection-Inference

Selection Inference (Creswell et al., 2022) is a recent exam-

ple of multiple interacting LM modules. It proposes split-

ting reasoning into: the selection module which selects a

subset of facts given a question, and the inference module

which infers new facts given this subset.

It may be represented by the model in Figure 4. Here S

is the selection of a subset of “facts” from a pre-specified

set of facts, and I is an inference driven by that fact.

The S and I nodes can be iterated to do multistep rea-

soning. The model is “trained” by giving it examples,

D = {(Qm, {Fmj}, Sm, Im, Am) : m = 1 : M}, as

part of the prompt.

Q

F

FACTS

S I A

Figure 4. Selection inference as a cascade. Here S is the selected

subset of facts and I is an inference driven by this subset.

3.4. Verifiers

Although adding explicit “thought” variables to a model

has been found to improve performance, models still arrive

at incorrect answers, or the correct answer for an erroneous

reason. An intuitive way to improve model performance is

to train it to judge whether an answer and thought are likely

to be “valid”. Cobbe et al. (2021) propose using a separate

model as a verifier to filter solutions to reasoning tasks.

We can create a “labeled” training set of the form D =
{(Qm, Tm, Am, V m}, where we add a “verification” label

V m ∈ {0, 1}, representing whether the thought Tm is a

valid form of reasoning for deriving Am from Qm, and

Am is the correct answer. This can be particularly help-

ful in settings where there may be more than one way of

deriving the answer. The verifiers may be used to reject

incorrect examples in ancestral sampling, and the thought

generator may itself be conditioned on the verifiers being

correct by finetuning or prompting, reminiscent of RL as in-

ference (Levine, 2018) and goal-conditioned policies such

as decision-transformer (Chen et al., 2021).

We can extend this to N -step reasoning as follows (where
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Q T1 T2 T3 A

V1 V2 V3

Figure 5. Verifier model. The small double-ringed nodes are de-

terministic buffer nodes that concatenate their inputs, accumulat-

ing all past strings. All other nodes are stochastic. The verifiers

are observed to take on the “correct” value.

we drop conditioning on D for brevity):

p(A|Q,V1:N = 1) ∝
∑

T1:N

p(A,T1:N , V1:N = 1 |Q),

where

p(A,T1:N , V1:N = 1|Q) =

[

N
∏

t=1

p(Tt|T1:t−1, Q)p(Vt = 1|T1:t, Q)

]

× p(A|T1:N , Q).

We can represent this as shown in Figure 5.

To see why such a verification model can be useful, con-

sider (for simplicity) the case where N = 1. Suppose

we have trained the model to generate valid thoughts and

answers by giving it suitable training examples, and then

we generate K samples (T k, V k, Ak) ∼ p(T, V,A|Q,D).
We can then rank the samples for validity by computing

rk = p(V k = 1|Ak, Q,D), and then picking the Ak with

largest score rk.

Cobbe et al. (2021) train the verifier to predict a binary cor-

rectness label. Scheurer et al. (2022) incorporates natural

language feedback, and finds that learning is significantly

more sample efficient. Preliminary evidence suggests that

LMs are capable of critiquing their own chain of reason-

ing in language, in which case the verifier produces natural

language and p(V1:N = 1|Q,A, T1:N) becomes the likeli-

hood of the verifier taking on a particular string value, such

as p(V1:N = ”The reasoning and solution are correct.”|...).
Saunders et al. (2022) study model generated critiques in

the context of summarization.

3.5. Tool-use

The applications discussed so far involve iterating a lan-

guage model, within some control flow, without external

feedback. There are many tasks of interest in which a

model is interacting with external systems. Cobbe et al.

(2021) has an LM use a calculator to solve math tasks,

while Nakano et al. (2021) put an LM in a loop with a web

browser to answer questions. Using PPLs to represent these

probabilistic models allows easily representing these cases,

by writing the call to the external tool, such as the calcula-

tor, directly into the program. Then techniques from sim-

ulation based inference, for example, can be applied to do

inference in such situations (Cranmer et al., 2020).

3.6. Twenty questions

In this section, we discuss experimental results using cas-

cades to solve the “Twenty Questions” task from BigBench

(BIG-bench collaboration, 2021). This task involves a con-

versation between two agents, Alice and Bob. Both agents

are presented with the rules of the game, and Alice is addi-

tionally presented with a concept (e.g. ‘apple’) to describe.

Bob has to guess the concept by asking a series of ques-

tions Bt of the form “Is it X?”, to which Alice answers

At ∈ {‘Yes.’, ‘No.’}. We repeat this process until Bob

guesses correctly, or we hit the limit of T rounds. This can

be thought of as a pair of interacting Markov chains, which

exchange strings, until some final end state is reached, as

illustrated in Figure 6.

RULES

CONCEPT

B1 B2

A1 A2

. . .

Figure 6. Twenty questions.

The goal is to infer what questions Bob should ask to guess

the concept as quickly as possible. This can be cast as a

reinforcement learning problem with string-valued actions,

or equivalently as an inference problem where we condition

on the goal state that AT = ‘yes’ for the soonest possible

T (c.f., planning as inference (Levine, 2018)).

In our current preliminary experiments, we use a forward

sampling approach (aka ancestral sampling), in which we

sample 50 conversations per concept with temperature 1.0.

We consider a trial successful if the target concept appears

in Bt. (i.e., Bob guesses the right answer). We reject a sam-

pling chain early if it is “malformed” (e.g., Bob generates

a response that is not a question).

Bob’s turn starts with ‘Is the concept’ which we complete

with the LM. Then we let Alice generate an answer; we

post-process Alice’s response by replacing all mentions of

the true concept with the generic word “concept”, to pre-

vent information leakage. Using the LaMDA 137B large

LM (Thoppilan et al., 2022), we find that the model is able

to solve 29% of the tasks. See Appendix B for more de-

tails.
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4. Discussion

We have shown how probabilistic programming provides a

flexible formalism for composing models together to define

complex probabilistic models over strings, placing many

existing algorithms in a unified framework. While this sug-

gests the possibility of applying a variety of existing infer-

ence and train-time techniques to the resulting models, the

present work does not evaluate methods beyond rejection

sampling.

We can also cast many planning and RL tasks in our frame-

work, by using the perspective of control as inference.

While we restrict presentation to the string setting, the

ideas presented here are applicable to multimodal settings

as well, allowing us to combine image and text models into

a larger system.

A challenge applying cascades in practice is the difficulty

of probabilistic inference in models with string-valued vari-

ables. Previous work in particle based inference for prob-

abilistic programs provides some hope in this direction

(Tolpin et al., 2016).

The core technical challenge is efficient inference, as is usu-

ally the case with PPLs. A key insight, which we intend

to explore in future work, is that we can emulate poste-

rior inference by training the LM to “fill in the blanks”,

corresponding to the unknown variables. A similar idea is

explored in foundation posteriors (Wu & Goodman, 2022),

applied to Stan probabilistic programs, demonstrating that

LMs are applicable to numerical data types as well. In other

words, we can use LMs as proposal distributions, or guide

networks. We also intend to explore fine-tuning methods,

going beyond the few-shot prompting approach described

here.

Recent advances in program synthesis suggest the possibil-

ity of probabilistic program induction (Lake et al., 2015;

Goodman et al., 2014) to search for cascades which solve

a target task, rather than assuming a fixed probabilistic pro-

gram structure.
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Language Model Cascades

A. Implementation

A.1. Inference

Given a program representing a probabilistic model, inference reifies specific unobserved values conditioned on observed

values. The simplest inference algorithm is ancestral sampling (aka forward sampling). The basic inference API is:

infer(question_thought_answer_critique,

seed=0,

# Specify observed variables:

observe={’question’: ’Alice made 37 dollars selling ...’,

’critique’: ’The reasoning and arithmetic are correct.’},

# Specify few-shot examples:

examples=[{’question’: ’example question 1’,

’thought’: ’example thought 1’,

’answer’: ’example answer 1’,

’critique’: ’example critique 1’},

...])

A.2. Code examples

In each example below, S is a string distribution. It consists of turning the input values into a prompt, together with any

examples provided as few-shot examples to the ‘infer’ method, and sampling until some stopping criterion.

The basic question answering graph directly generates the answer given the question:

def question_answer():

q = yield S(’question’)

a = yield S(’answer’, question=q)

return a

Chain of thought introduces a latent thought before producing an answer:

def question_thought_answer():

q = yield S(’question’)

t = yield S(’thought’, question=q)

a = yield S(’answer’, question=q, thought=t)

return a

Self critique introduces a step in which the model critiques its own reasoning in natural language:

def question_thought_answer_critique():

q = yield S(’question’)

t = yield S(’thought’, question=q)

a = yield S(’answer’, question=q, thought=t)

c = yield S(’critique’, question=q, thought=t, answer=a)

return a

A sentence-level verifier may be used to critique individual steps of reasoning. Furthermore, when to halt generation may

itself be a random variable:

def qta_verifier(max_steps=3):

q = yield S(’question’)

thoughts = []

for step in range(steps):

thought = yield S(’thought’, question=q, thoughts=thoughts)
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thoughts.append(thought)

# Verifier term used as the likelihood of the sequence

yield S(’verifier’, obs=’The reasoning is correct.’,

question=q, thoughts=thoughts)

# Halt based on output of the model

should_stop = S(’stop’, question=q, thoughts=thoughts)

if should_stop == ’yes’:

break

a = yield S(’answer’, question=q, thoughts=thoughts)

return answer

Selection-Inference introduces a two step inference procedure, consisting of first selecting a subset of facts, then inferring

a new fact from them. Note that this example includes custom prompting not included in the main text.

def selection_inference(max_steps=5):

f = yield S(’facts’)

q = yield S(’question’, facts=f)

deductions = []

for step in range(max_steps):

selection = yield S(’selection’,

facts=f + deductions,

question=question,

promptify=prompt_selection)

inference = yield S(’inference’,

facts=selection,

promptify=prompt_inference))

deductions.append(inference)

# Dynamic loop based on output of model.

should_stop = S(’stop’, question=q, deductions=deductions)

if should_stop == ’yes’:

break

a = yield S(’answer’, question=question, deductions=deductions)

return a

# Nodes may have custom prompts:

def prompt_selection(facts, question, selected=()):

facts = ’\n- ’.join(facts)

selected = ’\n- ’.join([’’] + list(selected))

return f"""Below are a series of facts together with a question.

Choose the set of facts which allow deducing the correct answer:

Facts:

- {facts}

Question: {question}

Selected:

{selected}"""
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def prompt_inference(facts, deduction=’’):

facts = ’\n- ’.join(facts)

return f"""Below are a set of facts, together with a deduction based on them:

Facts:

- {facts}

Therefore: {deduction}"""

B. More details on Twenty Questions

B.1. Problem definition

In this task there are two agents: Alice and Bob. Alice gets a prompt where it is given a concept it has to guess and an

introduction to the task. Bob gets a prompt where it is instructed on the task. The conversation then starts where Bob has

to ask a question and Alice responds to it. If Alice’s response includes the key concept, we change it to the word ‘concept‘

(alternatively, one might reject the trace). The program ends after the correct concept is guessed by Bob, or Bob does not

get the right answer in 10 questions, or Bob does not answer a question.

The 40 concepts that we test the model on are: [’apple’, ’television’, ’dinosaur’, ’airplane’,

’house’, ’tree’, ’coat’, ’shoes’, ’car’, ’train’, ’shower’, ’frisbee’, ’cow’,

’cosmic crisp apple’, ’giganotosaurus’, ’siberian huskey’, ’glass micropipette’,

’jog’, ’catch’, ’defenestrate’, ’eat’, ’apologize’, ’operate’, ’pretend’,

’anger’, ’love’, ’hate’, ’contentment’, ’jealousy’, ’surprise’, ’disgust’,

’hopefulness’, ’global poverty’, ’phase transition’, ’positive sum game’,

’beauty’, ’representative democracy’, ’tall’, ’mauve’, ’perspicacious’]. The model

gets right the 11 of the least abstract concepts: [’apple’, ’dinosaur’, ’airplane’, ’house’, ’tree’,

’shoes’, ’car’, ’cow’, ’eat’, ’love’, ’beauty’].
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B.2. Examples

Alice Prompt:

X 0 Hello Alice, I am Bob.

X 1 Hello Bob

X 2 Hello Alice, we are going to play twenty questions. I will think of a concept and Bob will ask you a series of

questions to which you will respond to ’Yes’ or ’No’ until Bob is able to guess the concept I am thinking.

X 1 Sounds good. What is the concept?

X 2 The concept is ’love’.

X 1 The concept is love ? Perfect, I got it. Bob, what is your first question? Bob Prompt:

X 0 Hello Alice, I am Bob.

X 1 Hello Bob, we are going to play twenty questions. I will think of a concept and you will ask me a series of

questions to which I will respond to each question with a ’Yes’ or ’No’, until you are able to guess the concept I

am thinking. What is your first question? Common Conversation:

X 0 Hello Alice, I am Bob.

X 1 Hello Bob, we are going to play twenty questions. I will think of a concept and you will ask me a series of

questions to which I will respond to each question with a ’Yes’ or ’No’, until you are able to guess the concept I

am thinking. What is your first question?

X 0 Is the concept a vegetable?

X 1 No

X 0 Is the concept a mineral?

X 1 No

X 0 Is the concept an animal?

X 1 No

X 0 Is the concept an instrument?

X 1 No

X 0 Is the concept an abstract concept such as love or happiness?

SUCCESS!
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Alice Prompt:

X 0 Hello Alice, I am Bob.

X 1 Hello Bob

X 2 Hello Alice, we are going to play twenty questions. I will think of a concept and Bob will ask you a series of

questions to which you will respond to ’Yes’ or ’No’ until Bob is able to guess the concept I am thinking.

X 1 Sounds good. What is the concept?

X 2 The concept is ’shoes’.

X 1 The concept is shoes ? Perfect, I got it. Bob, what is your first question?

Bob Prompt:

X 0 Hello Alice, I am Bob.

X 1 Hello Bob, we are going to play twenty questions. I will think of a concept and you will ask me a series of

questions to which I will respond to each question with a ’Yes’ or ’No’, until you are able to guess the concept I

am thinking. What is your first question?

Common Conversation:

X 0 Is the concept something that is a natural entity?

X 1 NO

X 0 Is the concept something that was invented or is man made?

X 1 the concept is concept which is something that was invented so i will answer the question with ’yes’

X 0 Is the concept a device?

X 1 Yes

X 0 Is the concept a computer?

X 1 The concept is not about a computer

X 0 Is the concept a piece of clothing?

X 1Yes

X 0 Is the concept a shirt?

X 1 no :: the concept concept is not a shirt

X 0 Is the concept pants?

X 1 No

X 0 Is the concept shoes?

SUCCESS!
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Example of wrong answer. Alice Prompt:

X 0 Hello Alice, I am Bob.

X 1 Hello Bob

X 2 Hello Alice, we are going to play twenty questions. I will think of a concept and Bob will ask you a series of

questions to which you will respond to ’Yes’ or ’No’ until Bob is able to guess the concept I am thinking.

X 1 Sounds good. What is the concept?

X 2 The concept is ’television’.

X 1 The concept is television ? Perfect, I got it. Bob, what is your first question?

Bob Prompt:

X 0 Hello Alice, I am Bob.

X 1 Hello Bob, we are going to play twenty questions. I will think of a concept and you will ask me a series of

questions to which I will respond to each question with a ’Yes’ or ’No’, until you are able to guess the concept I

am thinking. What is your first question?

Common Conversation:

X 0 Is the concept an animal, vegetable or mineral?

X 1 neither, i already know the answer, it’s concept

X 0 Is the concept something used?

X 1 Yes

X 0 Is the concept a game?

X 1 Yes

X 0 Is the concept played with a board?

X 1 No

X 0 Is the concept from the Monopoly board?

X 1 No (to be alternated)

X 0 Is the concept from the Monopoly board?

X 1 No

X 0 Is the concept something that is kept in the box?

X 1 No

X 0 Is the concept a card?

X 1 No

X 0 Is the concept something that can be held?

X 1 no (concept can’t be held)

X 0 Is the concept money?

X 1 No REJECT! Bob did not get ”television” in ten rounds.

B.3. Code for twenty questions

This code example demonstrates more directly constructing the prompt for for a task, rather than relying on automatic

prompting.

def twenty_questions_program(concept, max_questions):

alice_prompt = get_prompt_from_alice(concept, max_questions)

bob_prompt = get_prompt_from_bob(concept, max_questions)

common_conversation = ""

# iterate over rounds of questions and answers

for round_number in range(1, max_questions + 1):

current_turn = "\nX 0 Is the concept"

# Bob"s generates question. Program will be rejected if it does not generate a question.

bob_context = bob_prompt + common_conversation + current_turn

bob_response = yield S(f’bob {round_number}’, prompt=prompt)

if "?" not in bob_response:

yield reject(reason=’Bob response is not a question.’)
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current_turn += bob_response + "\nX 1 "

if concept.lower() in bob_response.replace(’?’,’’).lower().split(’’):

# Bob figured it out! Score should be equal to round number.

yield Success(num_rounds)

# Alice’s turn

alice_context = get_alice_context(alice_prompt, common_conversation, current_turn, concept, round_number)

alice_generation = yield S(f’alice {round_number}’, prompt=alice_context)

alice_generation = alice_generation.split(".")[0].split("\n")[0].split("X")[0]

# If Alice outputs the key concept, we hide it. An alternative would be to reject.

if concept.lower() in alice_generation:

alice_generation = alice_generation.lower().replace(

concept.lower(), "concept")

current_turn += alice_generation

common_conversation += current_turn

# Reject if it runs out of time.

yield reject(reason=’Ran out of turns.’)


